当前位置:首页 > 教学资料 > 教案

四年级下册数学鸡兔同笼教案

时间:2024-07-04 14:11:06
四年级下册数学鸡兔同笼教案

四年级下册数学鸡兔同笼教案

在教学工作者开展教学活动前,时常要开展教案准备工作,借助教案可以有效提升自己的教学能力。教案应该怎么写呢?以下是小编为大家收集的四年级下册数学鸡兔同笼教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

四年级下册数学鸡兔同笼教案1

教学目标:

1、认识和了解“鸡兔同笼”问题,初步掌握解决问题的策略与方法,体会解决问题策略的多样性。

2、经历解决问题的过程中,学习和体会“枚举”、“假设”等数学思想和方法,提高解决实际问题的能力。在解决问题的过程中归纳概括出鸡兔同笼问题的数学模型,进一步培养学生的合作意识和逻辑推理能力。

3、让学生感受古代数学问题的趣味性,受到祖国优秀数学文化的熏陶和感染,增强学习数学的乐趣。

教学重点:

会用假设法和方程法解答“鸡兔同笼”问题。

教学难点:

明白用假设法解决“鸡兔同笼”问题的算理。

教学用具:

多媒体课件。

教学过程:

一、创设情境,引入新课。

1、引入:

同学们,我们国家有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中一部,大约产生于一千五百年前,书中记载着这样一道有名的数学趣题。你们想看一看吗?

今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?把它翻译成现代汉语是:现在有一些鸡和兔被关在同一个笼子里。鸡和兔共有35个头,94只脚。鸡和兔各有多少只?

这就是著名的“鸡兔同笼”问题,生活中类似的问题非常多,这类问题应如何解决呢?今天我们就来研究著名的“鸡兔同笼”问题。板书课题:“鸡兔同笼”。

为便于研究,我们先从简单的生活问题入手,请看下面问题。

●学校买来50张电影票,一部分是4元一张的学生票,一部分是6元一张的成人票,总票价是260元。两种票各买来了多少张?

【设计意图】以我国古代著名的鸡兔同笼问题引入,让学生感受我国悠久的数学文化,激起探知这类问题的兴趣。

二、自主学习、小组探究

对于这个问题你想用什么方法来解决呢?请根据提示思考解决问题的方案。

温馨提示:

①用列举法怎样解决问题?

②你能用画图的方法解答吗?

③如果把这些票都看成学生票或都看成成人票如何解答?

④回顾列方程解决问题的经验,怎样用方程解决问题?

学生自己根据提示用自己喜欢的方法解决问题。

先把自己的想法在小组内说一说,再共同协商解决。

教师巡视,要注意发现学生的不同解法,同时参与小组的指导。

三、汇报交流,评价质疑

对于解决这个问题,同学们一定有自己的好的方法,请把你的好办法同大家交流吧。

1、列举法。

可以有目的的先展示这种方法。(多媒体展示。)

学生票数(张)成人票数(张)钱数(元)

2525250

2426252

2327254

2228256

2129258

2030260

质疑:有50张票,是否有必要一一列举,你是如何列举的?

(引导学生通常先从总数的中间数列举。)

质疑:根据假设算出的钱数与实际总钱数不一样时,你是如何调整的?

(引导学生根据数据特点确定调整方向、调整幅度。)

师强调:像咱们这样,采用列表的方法列举出来,并最终找到答案的方法,在数学上叫列举法,也叫枚举法。

2、假设法

(1)假设全是成人票:

①为了便于学生理解,展示假设为成人票,学生试画的分析图。

②引导:上面的过程如果用算式怎样表示呢?请同学们试试看。

(学生试着列算式,请两个学生到黑板上去板演。)

预设板演:

50×6=300(元)300-260=40(元)40÷(6-4)=20(张)

50-20=30(张)

③质疑:你这样做是如何想的?你是如何理解多出的40元的?根据多出的40元如何求出学生票和成人票的'?

预设回答:

假设全是成人票,就50×6=300元,而实际花260元,这样就多出了300-260=40元。

而1张学生票看做成人票就比1张学生票多2元,学生票的张数就是40÷(6-4)=20张了,成人票就是50-20=30张。

(2)假设全是学生票:

如果假设成全是学生票该如何解答?

总结方法归纳抽象出这类问题的模型。

学生票数=(成人票价×总张数-总钱数)÷(成人票价-学生票价)、

成人票数=(总钱数-学生票数×总张数)÷(成人票价-学生票价)、

3、方程法:

除了以上两种方法,还有别的计算方法了吗?

学生汇报列方程的方法。

(1)找出相等的数量关系。

(学生汇报,课件出示:成人票数+学生票数=50;成人钱数+学生钱数=260元)

(2)根据等量关系列式:

设成人票有x张,则学生票有(50-x)张。列方程为:6x+4(50-x)=260

4、学生比较以上几种方法解题方法。

四、抽象概括,总结提升。

让学生结合自己解决问题的经验,用自己的语言进行总结。

列举法:适合数据比较简单的问题,但是如果数字比较大,这样一一列举法就太麻烦了。

画图法:操作简单,比较直观。但数字大的时候,画图也是比较麻烦的。

假设法:适合所有的这类问题,但比较抽象,不好理解。

方程法:适用面广,便捷,容易理解。

师:同学们,我们这节课研究“鸡兔同笼”问题,我们探讨出了用枚举法、假设法、解方程的方法解决这种题。只不过列举法对于数据较大时比较麻烦。一般我们采用假设法和解方程的方法比较简便。

【设计意图】通过适时的总结,引领学生归纳建立“鸡兔同笼”问题的模型,及解决这类问题的一般方法和策略。

五、巩固应用,拓展提高

1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各有几何?

温馨提示:

A、先让学生认真读题。

B、然后自己解决,汇报交流。交流时同时让学生感受中华民族悠久的数学文化。

2、王丽有20张5元和2元的人民币,一共是82元。5元和2元的人民币各有多少张?

处理方法:

①学生认真读题,引 ……此处隐藏3686个字……一列出,肯定能找出答案,但有些麻烦。

师:那还有什么列表方法。

展示学生第二种列表方法出示表格。

生:说这种列表的方法。

师:观察这个表格,你又发现了什么。

生:这种列表,先几个几个的数,再逐渐调整。

师:先几个几个数,再往回调,在数学上也有个名字跳跃式列表。

展示学生第三种列表方法出示表格。

生:说这种列表的方法。

师:观察这个表格,你又发现了什么。

生:这种列表,先假设鸡兔各占一半,再调整。

师:这种列表有直接特点,我们称这种列表方法为取中列表。

想一想,为什么用列表法解决这个问题。

生:简单,能准确计算结果。

师:你更喜欢哪种列表方法,你们在不知不觉中找到解决问题策略,是什么?

生:列表。

师:首先根据信息尝试猜测,再计算验证,最后合理调整。

师:还可以用什么方法计算。

生:计算。

师:想知道古人是怎样解决这道题吗?

课件出示资料

师:看了这个资料你想说什么?

三、实践运用,巩固深化

1、小明的储蓄罐里有1角和5角的硬币共27枚,价值5.1元,1角和5角的硬币各有多少枚?

2、赛场上12张乒乓球台上同时有34人进行比赛,正在进行单打、双打比赛的球台各有几张?

3、小红参加数学知识竞赛,共10道题,每做对一道题得10分,做错一道题扣2分。小红每道题都做了,共得64分。她做对了几道题?

四、总结

通过这堂课的学习你学会了什么?

四年级下册数学鸡兔同笼教案6

教学目标:

1、知识与技能

初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。

2、过程与方法

通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。

3、情感、态度与价值观

培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。

教学重点:

用画图法和列表法解决相关的实际问题。

教学难点:

体会解决问题策略的多样化,培养学生分析问题、解决问题的能力。

教学准备:

课件

教学流程:

(一)问题引入,揭示课题

师:(出示主题图)大约在1500年前,《孙子算经》中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”

问:这段话是什么意思?谁能说说?(生试说)

师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头。从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)

(二)主动探究、合作交流、学习新知

师:说明为了研究方便,我们先将题目的条件做一个简化。

(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?

师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)

学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。

师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。

学生思考、分析、探索,接下来小组讨论、交流。

小组活动充分后进入小组汇报、集体交流阶段。

师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?

学生汇报探究的方法和结论:

1、 画图法:

给每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。

总结:画图的'方法非常便于观察、非常容易理解。

2、列表法:(展示学生所列表格)

学生说明列表的方法及步骤:

学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。

师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?

3、假设法:(随学生能否出现此种情况作为机动出示)

教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有10÷2=5(只),所以我们还可以这样去想:

板书:方法一:假设8只都是鸡,那么兔有:

(26-8×2)÷(4-2)=5(只)

鸡有8-5=3(只)

同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有6÷2=3(只),所以我们还可以这样去想:

板书:方法二:假设8只都是兔,那么鸡有:

(4×8-26)÷(4-2)=3(只)

兔有8-3=5(只)

小结方法:刚才我们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。

现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。

(三)解决实际问题、课堂延伸

1.尝试解答课前提出的古代《孙子算经》中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?

看看我国古人是怎么解这个题的。

2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?

(四)课堂小结

通过今天的学习,你有哪些收获?

师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。

《四年级下册数学鸡兔同笼教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式