当前位置:首页 > 教学资料 > 说课稿

勾股定理说课稿

时间:2024-06-08 23:48:38
勾股定理说课稿

勾股定理说课稿

作为一位无私奉献的人民教师,编写说课稿是必不可少的,编写说课稿是提高业务素质的有效途径。说课稿要怎么写呢?下面是小编精心整理的勾股定理说课稿,仅供参考,大家一起来看看吧。

勾股定理说课稿1

各位老师、评委:大家好﹗

今天我说课的题目是选自人教版八年级数学第十八章第一节的内容:勾股定理。

我将从以下这几个方面进行本节课的阐述:教材分析、学情分析、教法、学法指导、教学过程设计以及教学反思。

下面请大家和我共同走进教材。

(一)教材分析

⒈教材的地位和作用

《勾股定理》是人教版新课标八年级数学第十八章第一节第一课时内容,勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,是中学数学几个重要定理之一。它揭示了一个直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。勾股定理的发现、验证和应用蕴含着丰富的文化价值,它在理论上占有重要地位,学好本节至关重要。

⒉教学目标

根据新课程标准对学生知识、能力的要求,结合八年级学生实际水平、认知特点制定以下教学目标。

知识与技能:了解勾股定理的文化背景,体验勾股定理的探索过程,能够灵活地运用勾股定理及其计算。

过程与方法:让学生经历“观察-猜想-归纳-验证”的数学过程,并从中体会数形结合及从特殊到一般的数学思想。培养学生观察、比较、分析、推理的能力。

情感态度与价值观:通过介绍我国古代在研究勾股定理方面取得的伟大成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感,在探索问题的过程中,培养学生的合作交流意识和探索精神。

3.重点和难点

勾股定理的学习是建立在掌握一般三角形的性质、直角三角形以及三角形全等的基础上, 是直角三角形性质的拓展。本节课主要是对勾股定理的探索和勾股定理的证明。勾股定理的证明方法很多,本节课介绍的是等积法。通过本节课的教学,引领学生从不同的角度发现问题、用多样化策略解决问题,从而提高学生分析、解决问题的能力。

因此本节课的重点:是勾股定理的发现、验证和应用。

八年级学生已初步具备几何的观察能力和说理能力,也有了一定的空间想象和动手操作能力,但是他们的推理能力较弱、抽象思维能力不足。而本节课采用的是等积法证明。由于学生之前没有接触过等积法证明,他们对这种证明方法感到很陌生,尤其是觉得推理根据不明确,不象证明,没有教师的启发引领,学生不容易独立想到。

因此本节课的难点:是用拼图方法、面积法证明勾股定理。

(二)学情分析

八年级学生已初步具有几何图形的观察,几何证明的理论思维能力。希望老师预设便于他们进行观察的几何环境,给他们发表自己见解和表现自己才华的机会,希望老师满足他们的创造愿望,让他们实际操作,使他们获得施展自己创造才能的机会。

(三)说教学方法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,要展现获取知识和方法的思维过程, 针对八年级学生的知识结构和心理特征,本节课采取引导探索法,由浅入深,由特殊到一般地提出问题。以导为主,采用设疑的形式,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。使学生得到获得新知的成功感受,从而激发学生钻研新知。并利用教具与多媒体进行教学。

(四)说学习方法

我们常说:“现代的文盲不是不识字的人, 而是没有掌握学习方法的人”, 因而在教学中要特别重视学法的指导, 我采用了如下的学法指导:

在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。

(五)说教学过程

根据学生的认知规律和学习心理,本节课分六个活动进行学习,为了扩大课堂容量节省时间提高课堂效率,拟采用多媒体教学。

【活动1】:(多媒体展示)欣赏图片 了解历史

第一幅图片配上文字说明。

设计意图:这样的导入富有科学特色和浓郁的数学气息,激起学生强烈的兴趣和求知欲。

第二幅图片为20xx年在我国北京召开的第24届国际数学家大会的场景,值得一提的是这次大会的会徽,为著名的赵爽弦图。

设计意图:在学生欣赏赵爽弦图的过程中,进行爱国主义教育,可以让他们充分体会到我国古代在数学研究方面取得的伟大成就,从而激发学生的爱国热情和民族自豪感。

第三幅图片为介绍古代勾和股。

设计意图:简单介绍勾股定理的历史,引出勾股定理这一课题。

学生,读一读和观察。

【活动2】:探索勾股定理

首先讲述毕达哥拉斯到朋友家做客的故事。(多媒体展示)

然后提出两个问题,让学生沿着毕达哥拉斯的足迹去探寻勾股定理。

{问题一}:在图中你能发现那些基本图形?

{问题二}:与等腰直角三角形相邻的正方形面积之间有怎样的关系?

(多媒体展示)探究一

{问题三}:如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

{问题四}:由此你可以得出等腰直角三角形三边存在着一种怎样特殊的数量关系吗?

学生在独立探究的基础上观察图片,计算面积,分组交流, 猜想和归纳。

教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时就要用到数学当中常见的割补法。因此需要教师的引导。

设计意图:通过讲传说故事来激发学生学习兴趣,引导学生进入学习状态。学生会很积极的投入到探索这个问题的实践中。让学生并且尝试了从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验。

“问题是思维的起点”,通过层层设问,引导学生发现新知。

(多媒体展示)探究二

{问题五}:等腰直角三角形三边具有这样的特殊关系,那么一般的直角三角形呢?如图,每个小方格的面积为1个单位,你能写出正方形A、B、C的面积吗?

将一般的直角三角形放入到网格中,并使得直角三角形的两条直角边为正整数,让学生去计算图1和图2中六个正方形的面积。关注学生能否用不同的方法得到大正方形的面积。

学生计算,观察,猜想,语言表达猜想结论。

教师参与学生小组活动,指导,倾听学生交流。针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积。在计算C的面积时可能有一定的难度,此时又用 ……此处隐藏23462个字……,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)

①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。思考:那条路线最短?

②如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路线是什么?你画得对吗?

③蚂蚁从A点出发,想吃到C点处的食物,它沿圆柱侧面爬行的最短路线是什么?

思路点拨:引导学生在自制的圆柱侧面上寻找最短路线;提醒学生将圆柱侧面展开成长方形,引导学生观察分析发现“两点之间的所有线中,线段最短”。 学生在自主探索的基础上兴趣高涨,气氛异常的活跃,他们发现蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路线是最短的!我也意外的发现了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告诉学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2.(课本P58图14.2.3)

思路点拨:厂门的宽度是足够的,这个问题的关键是观察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H,寻找出Rt△OCD,运用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可见卡车能顺利通过 。详细解题过程看课本 引导学生完成P58做一做。

三、课堂小练

1、课本P58练习第1,2题。

2、探究: 一门框的尺寸如图所示,一块长3米,宽2.2米的薄木板是否能从门框内通过?为什么?

四、小结

直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的具体应用,那样就能很轻松的解决现实生活中的许多问题,达到事倍功半的效果。

五、布置作业

课本P60习题14.2第1,2,3题。

勾股定理说课稿15

一、说教材

(一)教材分析

本节内容选自人教版八年级数学下册第17章第二节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判定定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法来证明几何问题的思想,为将来学习解析几何埋下了伏笔。

(二)教学目标

根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。

知识技能:

理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。

掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。

了解逆命题的概念,以及原命题为真时,它的逆命题不一定为真。

过程方法:

1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程

2、通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用

3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。

情感态度:

在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神

(三)学情分析

尽管已到初二下学期的学生知识增多,能力增强,但思维的局限性还很大,能力之间也有差距,而利用“构造法”证明勾股定理的逆定理学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,而勾股定理逆定理的应用是本节重点

重点:勾股定理逆定理的应用

难点:勾股定理逆定理的证明

二、说教法学法

数学课程不仅注重知识、技能,以及情感意识和创造力的培养,同样注重社会实践和体验,教学要遵循以教师为主导,学生为主体的原则,因此我采用的教法学法如下:

在教学中以小组合作,自主探索为形式,采用“提问引导法”,通过“提出疑问”来启发诱导学生,让学生自觉主动地去分析问题、解决问题,学生在操作过程中不断“发现问题——解决问题”,变学生“学会”为“会学”.这样不仅使学生学习目标明确,而且能够培养他们的合作精神和自主学习的能力。根据学法指导自主性和差异性原则,本节我主要采用自主探究学习法,通过设计一系列问题,引导学生主动探究新知,体现学习自主性,从不同层面发掘不同学生的不同能力。

三、说教学准备

1、多媒体教学课件

2、纸片、直尺、圆规等

3、对学生事先分组

四、说教学过程

根据本课教学内容以及数学课程学科特点,结合八年级学生的实际认知水平,我设计了如下六个教学环节:

(一)复习提问、引入新课

问题1:前面我们学习了勾股定理,你能说出它的题设和结论吗?

问题2:若一个三角形三边具有a2+b2=c2,能否确定这个三角形是直角三角形?

(二)动手操作、观察猜想

探究一:分组做实验

第一组同学每人画一个边长为3cm、4 cm、5 cm的三角形;

第二组同学每人画一个边长为2.5 cm、6 cm、7.5 cm的三角形;

第三组同学每人画一个边长为4 cm、7.5 cm、8.5 cm的三角形;

第四组同学每人画一个边长为2 cm、5 cm、6 cm的三角形。

问题1:观察这些三角形,它们分别是什么形状呢?并测量验证

问题2:前三个三角形三边具有怎样的关系呢?

问题3: 结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?

学生活动:动手、观察、测量、思考、猜想

设计意图:由特殊到一般,归纳猜想得出勾股定理的逆命题,既培养学生动手操作能力和寻求解决数学问题的一般方法,又体验了数与形的内在联系。

(三)实践验证,归纳证明

教师出示问题

问题1:对于一个真命题,它的逆命题是否也为真?学生举例说明。

勾股定理的逆命题是否也正确?怎么证明?

问题2:三边长度分别3cm,4cm,5cm的三角形与以3cm,4cm为直角边的直角三角形之间有什么关系,你是怎样得到的?(出示纸片)

问题3:你能否借鉴问题2的方法来证明勾股定理的逆命题呢?

学生活动:观察思考,动手操作,分组讨论,交流合作(教师引导学生主动探索,在师生互动中完成证明,得到勾股定理的逆定理)

设计意图:把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点。

《勾股定理说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式